Interaction between Soluble and Membrane-Embedded Potassium Channel Peptides Monitored by Fourier Transform Infrared Spectroscopy
نویسندگان
چکیده
Recent studies have explored the utility of Fourier transform infrared spectroscopy (FTIR) in dynamic monitoring of soluble protein-protein interactions. Here, we investigated the applicability of FTIR to detect interaction between synthetic soluble and phospholipid-embedded peptides corresponding to, respectively, a voltage-gated potassium (Kv) channel inactivation domain (ID) and S4-S6 of the Shaker Kv channel (KV1; including the S4-S5 linker "pre-inactivation" ID binding site). KV1 was predominantly α-helical at 30°C when incorporated into dimyristoyl-l-α-phosphatidylcholine (DMPC) bilayers. Cooling to induce a shift in DMPC from liquid crystalline to gel phase reversibly decreased KV1 helicity, and was previously shown to partially extrude a synthetic S4 peptide. While no interaction was detected in liquid crystalline DMPC, upon cooling to induce the DMPC gel phase a reversible amide I peak (1633 cm(-1)) consistent with novel hydrogen bond formation was detected. This spectral shift was not observed for KV1 in the absence of ID (or vice versa), nor when the non-inactivating mutant V7E ID was applied to KV1 under similar conditions. Alteration of salt or redox conditions affected KV1-ID hydrogen bonding in a manner suggesting electrostatic KV1-ID interaction favored by a hairpin conformation for the ID and requiring extrusion of one or more KV1 domains from DMPC, consistent with ID binding to S4-S5. These findings support the utility of FTIR in detecting reversible interactions between soluble and membrane-embedded proteins, with lipid state-sensitivity of the conformation of the latter facilitating control of the interaction.
منابع مشابه
Interaction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملInteraction of Cisplatin with Cellular Macromolecules: A Fourier Transform Infrared Spectroscopy Study
Platinum is a metallic element, which may react with our cellular component through its involvement in cancer chemotherapy medications. Cisplatin is one of the most useful antineoplastic drugs against human ovarian carcinoma, which has the central element of platinum in its structure. The nature of chemical interaction between platinum and cellular macromolecules is yet to be understood. We exa...
متن کاملMolecular view by fourier transform infrared spectroscopy of the relationship between lactocin 705 and membranes: speculations on antimicrobial mechanism.
Lactocin 705 is a bacteriocin whose activity depends upon the complementation of two peptides, termed Lac705alpha and Lac705beta. Neither Lac705alpha nor Lac705beta displayed bacteriocin activity by itself when the growth of sensitive cells was monitored. To obtain molecular insights into the lactocin 705 mechanism of action, Fourier transform infrared spectroscopy was used to investigate the i...
متن کاملConformation and Interaction of a D,L-alternating peptide with a bilayer membrane: x-ray reflectivity, CD, and FTIR spectroscopy.
Peptides with alternating amino acid configuration provide helical secondary structures that are especially known from the membrane channel and pore-forming gramicidin A. In analogy to this natural D,L-alternating pentadecapeptide, the potential of D,L-alternating peptides for membrane insertion is investigated using the model dodecamer peptide H-(Phe-Tyr)(5)-Trp-Trp-OH. This aromatic peptide i...
متن کاملPredicting of Effective Dose as Biomarker for Cytotoxicity Using Partial Least Square-Fourier Transform Infrared Spectroscopy (PLS_FTIR)
Toxicity bioassays are important tools to determine biological effects of chemical agents on species. The questions remained on, what effects have been imposed on each of the different molecular site of cells by chemical exposure and how to find a pattern for chemical toxicity. To address the questions, HepG2 cell lines were exposed to the different concentrations of cisplatin for 24 hours to r...
متن کامل